### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### ( $\mu$ -Oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$ )bis[bis(2,2'bipyridine- $\kappa^2 N, N'$ )cobalt(II)] $\mu_6$ -oxidododeca- $\mu_2$ -oxido-hexaoxido-hexatungstate(VI)

# Congwen Shi,<sup>a</sup> Liming Fan,<sup>a,b</sup> Peihai Wei,<sup>a</sup> Bin Li<sup>b</sup> and Xiutang Zhang<sup>a,b</sup>\*

<sup>a</sup>Advanced Material Institute of Research, Department of Chemistry, Qilu Normal University, Jinan 250013, People's Republic of China, and <sup>b</sup>College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China

Correspondence e-mail: xiutangzhang@yahoo.com.cn

Received 27 May 2010; accepted 15 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.013 Å; R factor = 0.031; wR factor = 0.076; data-to-parameter ratio = 12.5.

The asymmetric unit of the title compound,  $[Co_2(C_2O_4)-(C_{10}H_8N_2)_4][W_6O_{19}]$ , consists of one half of the complex  $[Co_2(C_2O_4)(C_{10}H_8N_2)_4]^{2+}$  cation and one half of the Lindqvist-type  $[W_6O_{19}]^{2-}$  isopolyanion. Both constituents are completed by crystallographic inversion symmetry. In the dimeric cation, the  $Co^{II}$  atom is surrounded in a distorted octahedral coordination by four N atoms from two chelating 2,2'-bipyridine ligands and by two O atoms from the chelating oxalate anion. The Lindqvist-type anion exhibits the characteristic W–O bond-length distribution, with the shortest bonds being the W–O<sub>terminal</sub> bonds and the longest being those to the central O atom.

#### **Related literature**

For general background to polyoxidometalates, see: Pope & Müller (1991). For polyoxidometalates modified with amines, see: Zhang, Dou *et al.* (2009); Zhang, Wei *et al.* (2009); Zhang *et al.* (2010). For another structure comprising a Lindqvist-type isopolyanion, see: Meng *et al.* (2006). For a related structure, see: Li & Xu (2009).



#### **Experimental**

#### Crystal data

$$\begin{split} & [\text{Co}_2(\text{C}_2\text{O}_4)(\text{C}_{10}\text{H}_8\text{N}_2)_4][\text{W}_6\text{O}_{19}] \\ & M_r = 2237.72 \\ & \text{Triclinic, } P\overline{1} \\ & a = 9.4876 \text{ (15) } \text{\AA} \\ & b = 9.8548 \text{ (15) } \text{\AA} \\ & c = 14.174 \text{ (2) } \text{\AA} \\ & \alpha = 90.769 \text{ (2)}^{\circ} \\ & \beta = 91.576 \text{ (2)}^{\circ} \end{split}$$

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *T*<sub>min</sub> = 0.291, *T*<sub>max</sub> = 0.408

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.076$ S = 1.004613 reflections 9331 measured reflections

 $0.12 \times 0.10 \times 0.08 \text{ mm}$ 

 $\gamma = 91.113 \ (2)^{\circ}$ 

Z = 1

V = 1324.3 (4) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $\mu = 13.67 \text{ mm}^{-1}$ 

T = 293 K

4613 independent reflections 3755 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.027$ 

| 368 parameters                                             |    |
|------------------------------------------------------------|----|
| H-atom parameters constraine                               | ed |
| $\Delta \rho_{\rm max} = 2.41 \text{ e } \text{\AA}^{-3}$  |    |
| $\Delta \rho_{\rm min} = -1.10 \ {\rm e} \ {\rm \AA}^{-3}$ |    |

#### Table 1

Selected bond lengths (Å).

| Co1-O1    | 2.104 (6) | O8-W3 <sup>i</sup>  | 2.3185 (4) |
|-----------|-----------|---------------------|------------|
| Co1-N1    | 2.101 (7) | O8-W3               | 2.3185 (4) |
| Co1-N4    | 2.105 (6) | O8-W1               | 2.3240 (4) |
| Co1-N2    | 2.114 (6) | O8-W1 <sup>i</sup>  | 2.3240 (4) |
| Co1-N3    | 2.119 (7) | O8-W2 <sup>i</sup>  | 2.3252 (5) |
| Co1-O2    | 2.134 (6) | O8-W2               | 2.3252 (5) |
| O3-W2     | 1.690 (6) | O9-W2               | 1.912 (6)  |
| O4-W2     | 1.919 (6) | O9-W1               | 1.915 (5)  |
| O4-W3     | 1.926 (6) | O10-W1              | 1.914 (6)  |
| O5-W3     | 1.904 (5) | O10-W3 <sup>i</sup> | 1.914 (6)  |
| $O5-W2^i$ | 1.935 (5) | O11-W1              | 1.696 (6)  |
| O6-W3     | 1.698 (6) | O12-W1              | 1.922 (5)  |
| O7-W3     | 1.915 (6) | $O12 - W2^i$        | 1.920 (6)  |
| O7-W1     | 1.931 (6) |                     |            |

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from the 973 Key Program of the MOST (2006CB932905 and 2007CB81532), the National Natural Science Foundation of China (20873160), the Chinese Academy of Sciences (KJCX2-YW-M02), Shandong Provincial Education Department and Shandong Institute of Education is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2358).

#### References

- Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, P.-Z. & Xu, Q. (2009). Acta Cryst. E65, m508.
- Meng, F. X., Liu, K. & Chen, Y. G. (2006). *Chin. J. Struct. Chem.* **25**, 837–843. Pope, M. T. & Müller, A. (1991). *Angew. Chem. Int. Ed.* **30**, 34–38.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, **362**, 3325–3332.
- Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26-m27.
- Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.

Acta Cryst. (2010). E66, m822-m823 [doi:10.1107/S1600536810023007]

# $(\mu$ -Oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'})$ bis[bis(2,2'-bipyridine- $\kappa^2 N, N'$ )cobalt(II)] $\mu_6$ -oxido-dodeca- $\mu_2$ -oxido-hexaoxido-hexatungstate(VI)

#### C. Shi, L. Fan, P. Wei, B. Li and X. Zhang

#### Comment

There has been extensive interest in polyoxidometalates, owing to their fascinating properties and great potential applications in many fields such in catalysis, material science, medicine and magnetochemistry (Pope & Müller, 1991). Organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxidomolybdates or heteropolyoxidomolybdates under hydrothermal condictions (Zhang, Dou *et al.*, 2009; Zhang, Wei *et al.*, 2009; Zhang *et al.*, 2010). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, *viz.* of a binuclear complex  $[Co_2(C_2O_4)(C_{10}H_8N_2)_4]^{2+}$  cation, and one Lindqvist-type  $[W_6O_{19}]^{2-}$  isopolyanion. Both constituents exhibit  $\overline{1}$  symmetry. The Co<sup>2+</sup> cation is surrounded in a distorted octahedral coordination by four N atoms from two chelating 2,2'-bipyridine ligands and two O atoms from a chelating oxalate anion. The Co—N and Co—O bond lengths are in the range of 2.101 (7)—2.119 (7) and 2.104 (6)—2.134 (6) Å, respectively, and are in good agreement with the bond lengths observed for *catena*-poly[[(2,2'-bipyridine- $\kappa$ N,N)cobalt(II)]- $\mu$ -oxalato- $\kappa$ <sup>4</sup>O<sup>1</sup>,O<sup>2</sup>:O<sup>1'</sup>,O<sup>2'</sup>] (Li & Xu, 2009).

The  $[W_6O_{19}]^{2-}$  polyoxidoanion, possessing the well known Lindquist structure, is formed by six WO<sub>6</sub> octahedra connected with each other through edge-sharing oxygen atoms. This anion approaches an approximate  $O_h$  symmetry, but actually has  $\overline{1}$  symmetry. Three different kinds of oxygen atoms exist in the cluster, *viz*. terminal Oa, double-bridging Ob, and central Oc oxygen atoms. Therefore, W—O bond lengths can be grouped into three sets: W—Oa: 1.690 (6)—1.698 (6) Å; W—Ob: 1.904 (5)—1.935 (5) Å; W—Oc: 2.3185 (4)—2.3252 (5) Å; these bond lengths strictly follow the rule W—Oa < W—Ob < W—Oc, which is in agreement with the Lindqvist-type polyoxidotungstate reported by Meng *et al.* (2006).

#### Experimental

2,2'-bipyridine (0.5 mmoL 0.07 g) and *p*-carboxyphenylboronic acid were purchased from Jinan Henghua Science & Technology Co. Ltd. A mixture of 2,2'-bipyridine (0.5 mmol 0.07 g), tungstic acid (0.4 mmoL, 0.10 g), oxalic aicd (10 mmol, 0.09), *p*-carboxyphenylboronic acid (0.3 mmol, 0.05 g), and cobalt(II) sulfate heptahydrate (0.2 mmol, 0.05 g) in 14 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Red crystals suitable for the X-ray experiment were obtained. Anal. Calc. for  $C_{42}H_{32}Co_2N_8O_{23}W_6$ : C, 22.53; H, 1.43; N, 5.01. Found: C, 22.26; H, 1.33; N, 4.85%.

#### Refinement

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å,  $U_{iso} = 1.2U_{eq}(C)$ . In the final difference Fourier map the highest peak is 2.60 Å from atom H1 and the deepest hole is 0.81 Å from atom W3.

The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model.

#### **Figures**



Fig. 1. The cation and anion of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.

# $(\mu - Oxalato - \kappa^4 O^1, O^2; O^{1'}, O^{2'}) bis[bis(2, 2' - bipyridine - \kappa^2 N, N') cobalt(II)] \ \mu_6 - oxido - dodeca - \mu_2 - oxido - hexaoxido - hexatungstate(VI)$

| Crystal data                                                                                                                                      |                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| [Co <sub>2</sub> (C <sub>2</sub> O <sub>4</sub> )(C <sub>10</sub> H <sub>8</sub> N <sub>2</sub> ) <sub>4</sub> ][W <sub>6</sub> O <sub>19</sub> ] | Z = 1                                                 |
| $M_r = 2237.72$                                                                                                                                   | F(000) = 1022                                         |
| Triclinic, $P\overline{1}$                                                                                                                        | $D_{\rm x} = 2.806 {\rm Mg m}^{-3}$                   |
| Hall symbol: -P 1                                                                                                                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| <i>a</i> = 9.4876 (15) Å                                                                                                                          | Cell parameters from 3530 reflections                 |
| b = 9.8548 (15)  Å                                                                                                                                | $\theta = 2.5 - 27.3^{\circ}$                         |
| c = 14.174 (2) Å                                                                                                                                  | $\mu = 13.67 \text{ mm}^{-1}$                         |
| $\alpha = 90.769 \ (2)^{\circ}$                                                                                                                   | T = 293  K                                            |
| $\beta = 91.576 \ (2)^{\circ}$                                                                                                                    | Block, red                                            |
| γ = 91.113 (2)°                                                                                                                                   | $0.12\times0.10\times0.08~mm$                         |
| $V = 1324.3 (4) \text{ Å}^3$                                                                                                                      |                                                       |

#### Data collection

| Bruker APEXII CCD<br>diffractometer                                  | 4613 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 3755 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.027$                                                     |
| $\varphi$ and $\omega$ scans                                         | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2001) | $h = -11 \rightarrow 11$                                                  |
| $T_{\min} = 0.291, \ T_{\max} = 0.408$                               | $k = -11 \rightarrow 11$                                                  |
| 9331 measured reflections                                            | $l = -16 \rightarrow 16$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods |
|---------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map           |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | Hydrogen site location: inferred from neighbouring sites       |
| $wR(F^2) = 0.076$               | H-atom parameters constrained                                  |

| <i>S</i> = 1.00  | $w = 1/[\sigma^2(F_o^2) + (0.0375P)^2 + 1.9139P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|------------------|-------------------------------------------------------------------------------------|
| 4613 reflections | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 368 parameters   | $\Delta \rho_{\text{max}} = 2.41 \text{ e} \text{ Å}^{-3}$                          |
| 0 restraints     | $\Delta \rho_{min} = -1.10 \text{ e } \text{\AA}^{-3}$                              |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Tractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A | Fractional | atomic | coordinates | and | isotropic o | r equivalent | isotropic | displacement | parameters | (Å | 2) |
|------------------------------------------------------------------------------------------------|------------|--------|-------------|-----|-------------|--------------|-----------|--------------|------------|----|----|
|------------------------------------------------------------------------------------------------|------------|--------|-------------|-----|-------------|--------------|-----------|--------------|------------|----|----|

|     | x           | У           | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|------------|---------------------------|
| C1  | 0.5864 (9)  | 0.5558 (9)  | 0.7481 (6) | 0.039 (2)                 |
| H1  | 0.6557      | 0.5423      | 0.7040     | 0.046*                    |
| C2  | 0.4503 (10) | 0.5210 (10) | 0.7228 (7) | 0.050 (3)                 |
| H2  | 0.4275      | 0.4831      | 0.6638     | 0.060*                    |
| C3  | 0.3498 (10) | 0.5440 (10) | 0.7869 (7) | 0.050 (3)                 |
| Н3  | 0.2562      | 0.5220      | 0.7714     | 0.060*                    |
| C4  | 0.3841 (9)  | 0.5996 (10) | 0.8753 (6) | 0.045 (2)                 |
| H4  | 0.3150      | 0.6150      | 0.9192     | 0.054*                    |
| C5  | 0.5239 (8)  | 0.6314 (8)  | 0.8957 (5) | 0.0262 (18)               |
| C6  | 0.5713 (9)  | 0.6925 (8)  | 0.9874 (5) | 0.031 (2)                 |
| C7  | 0.4828 (10) | 0.7231 (11) | 1.0590 (7) | 0.050 (3)                 |
| H7  | 0.3869      | 0.7028      | 1.0521     | 0.061*                    |
| C8  | 0.5343 (12) | 0.7834 (12) | 1.1405 (7) | 0.062 (3)                 |
| H8  | 0.4747      | 0.8067      | 1.1889     | 0.074*                    |
| C9  | 0.6775 (12) | 0.8085 (12) | 1.1486 (7) | 0.064 (3)                 |
| Н9  | 0.7157      | 0.8488      | 1.2035     | 0.077*                    |
| C10 | 0.7625 (11) | 0.7754 (10) | 1.0781 (6) | 0.046 (2)                 |
| H10 | 0.8589      | 0.7931      | 1.0851     | 0.055*                    |
| C11 | 0.8337 (10) | 0.9655 (10) | 0.8619 (7) | 0.046 (2)                 |
| H11 | 0.7816      | 0.9641      | 0.9166     | 0.055*                    |
| C12 | 0.8660 (11) | 1.0894 (10) | 0.8234 (7) | 0.052 (3)                 |
| H12 | 0.8396      | 1.1705      | 0.8515     | 0.062*                    |
| C13 | 0.9399 (12) | 1.0868 (11) | 0.7404 (8) | 0.062 (3)                 |
| H13 | 0.9621      | 1.1676      | 0.7105     | 0.074*                    |
| C14 | 0.9796 (10) | 0.9684 (10) | 0.7032 (7) | 0.047 (2)                 |
| H14 | 1.0299      | 0.9669      | 0.6478     | 0.057*                    |
| C15 | 0.9459 (8)  | 0.8496 (9)  | 0.7469 (6) | 0.0306 (19)               |

| C16 | 0.9845 (8)   | 0.7135 (9)   | 0.7095 (6)  | 0.0294 (19)  |
|-----|--------------|--------------|-------------|--------------|
| C17 | 1.0644 (9)   | 0.6960 (10)  | 0.6295 (6)  | 0.040 (2)    |
| H17 | 1.1000       | 0.7709       | 0.5981      | 0.048*       |
| C18 | 1.0897 (9)   | 0.5675 (10)  | 0.5977 (6)  | 0.043 (2)    |
| H18 | 1.1428       | 0.5541       | 0.5443      | 0.052*       |
| C19 | 1.0363 (9)   | 0.4584 (10)  | 0.6452 (6)  | 0.043 (2)    |
| H19 | 1.0522       | 0.3703       | 0.6243      | 0.051*       |
| C20 | 0.9589 (9)   | 0.4815 (9)   | 0.7240 (6)  | 0.035 (2)    |
| H20 | 0.9230       | 0.4076       | 0.7564      | 0.042*       |
| C21 | 1.0517 (8)   | 0.5600 (8)   | 1.0069 (5)  | 0.0255 (18)  |
| Col | 0.83213 (11) | 0.65380 (11) | 0.88211 (7) | 0.0263 (3)   |
| N1  | 0.6258 (7)   | 0.6078 (7)   | 0.8323 (4)  | 0.0302 (16)  |
| N2  | 0.7116 (7)   | 0.7170 (7)   | 0.9974 (5)  | 0.0328 (17)  |
| N3  | 0.8729 (7)   | 0.8481 (7)   | 0.8254 (5)  | 0.0325 (16)  |
| N4  | 0.9334 (7)   | 0.6070 (7)   | 0.7558 (4)  | 0.0269 (15)  |
| 01  | 1.0227 (6)   | 0.6668 (6)   | 0.9616 (4)  | 0.0350 (14)  |
| O2  | 0.8466 (5)   | 0.4532 (6)   | 0.9359 (4)  | 0.0318 (13)  |
| 03  | 0.4860 (7)   | 0.8809 (7)   | 0.7694 (4)  | 0.0521 (18)  |
| O4  | 0.3221 (6)   | 1.0289 (6)   | 0.6381 (4)  | 0.0362 (14)  |
| 05  | 0.3335 (6)   | 1.1440 (6)   | 0.3892 (4)  | 0.0369 (15)  |
| O6  | 0.1293 (7)   | 1.1836 (7)   | 0.5300 (5)  | 0.0540 (18)  |
| 07  | 0.2326 (6)   | 0.9278 (6)   | 0.4737 (4)  | 0.0383 (15)  |
| 08  | 0.5000       | 1.0000       | 0.5000      | 0.0219 (16)  |
| 09  | 0.3985 (6)   | 0.7844 (6)   | 0.5844 (4)  | 0.0342 (14)  |
| O10 | 0.5765 (6)   | 0.7561 (6)   | 0.4464 (4)  | 0.0373 (14)  |
| 011 | 0.2952 (7)   | 0.6576 (7)   | 0.4139 (5)  | 0.0528 (18)  |
| 012 | 0.4107 (6)   | 0.8997 (6)   | 0.3357 (4)  | 0.0338 (14)  |
| W1  | 0.38156 (4)  | 0.80202 (4)  | 0.45023 (2) | 0.03214 (12) |
| W2  | 0.49167 (4)  | 0.92799 (4)  | 0.65534 (2) | 0.03134 (12) |
| W3  | 0.28645 (4)  | 1.10717 (4)  | 0.51619 (2) | 0.03216 (12) |
|     |              |              |             |              |

### Atomic displacement parameters $(Å^2)$

| $U^{11}$  | $U^{22}$                                                                                                                                                                                       | $U^{33}$                                                                                                                                                                                                                                                                                                                                  | $U^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $U^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.039 (5) | 0.051 (6)                                                                                                                                                                                      | 0.025 (4)                                                                                                                                                                                                                                                                                                                                 | 0.002 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.004 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.011 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.047 (6) | 0.057 (7)                                                                                                                                                                                      | 0.044 (6)                                                                                                                                                                                                                                                                                                                                 | 0.004 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.018 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.008 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.028 (5) | 0.061 (7)                                                                                                                                                                                      | 0.058 (6)                                                                                                                                                                                                                                                                                                                                 | -0.010 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.014 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.004 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.031 (5) | 0.063 (7)                                                                                                                                                                                      | 0.041 (5)                                                                                                                                                                                                                                                                                                                                 | -0.004 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.002 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.024 (4) | 0.028 (5)                                                                                                                                                                                      | 0.027 (4)                                                                                                                                                                                                                                                                                                                                 | 0.000 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.003 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.032 (5) | 0.031 (5)                                                                                                                                                                                      | 0.030 (4)                                                                                                                                                                                                                                                                                                                                 | 0.001 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.012 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.038 (6) | 0.064 (7)                                                                                                                                                                                      | 0.049 (6)                                                                                                                                                                                                                                                                                                                                 | -0.004 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.011 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.014 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.057 (7) | 0.074 (8)                                                                                                                                                                                      | 0.055 (7)                                                                                                                                                                                                                                                                                                                                 | -0.002 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.027 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.027 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.072 (8) | 0.083 (9)                                                                                                                                                                                      | 0.036 (6)                                                                                                                                                                                                                                                                                                                                 | -0.003 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.003 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.030 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.052 (6) | 0.051 (6)                                                                                                                                                                                      | 0.036 (5)                                                                                                                                                                                                                                                                                                                                 | -0.007 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.003 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.014 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.044 (6) | 0.039 (6)                                                                                                                                                                                      | 0.056 (6)                                                                                                                                                                                                                                                                                                                                 | 0.007 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.002 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.064 (7) | 0.023 (5)                                                                                                                                                                                      | 0.067 (7)                                                                                                                                                                                                                                                                                                                                 | 0.006 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.001 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.008 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.066 (8) | 0.044 (7)                                                                                                                                                                                      | 0.074 (8)                                                                                                                                                                                                                                                                                                                                 | -0.007 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.002 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.013 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.053 (6) | 0.042 (6)                                                                                                                                                                                      | 0.047 (6)                                                                                                                                                                                                                                                                                                                                 | -0.007 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.006 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | $U^{11}$<br>0.039 (5)<br>0.047 (6)<br>0.028 (5)<br>0.031 (5)<br>0.024 (4)<br>0.032 (5)<br>0.038 (6)<br>0.057 (7)<br>0.072 (8)<br>0.052 (6)<br>0.044 (6)<br>0.064 (7)<br>0.066 (8)<br>0.053 (6) | $U^{11}$ $U^{22}$ $0.039 (5)$ $0.051 (6)$ $0.047 (6)$ $0.057 (7)$ $0.028 (5)$ $0.061 (7)$ $0.031 (5)$ $0.063 (7)$ $0.024 (4)$ $0.028 (5)$ $0.032 (5)$ $0.031 (5)$ $0.038 (6)$ $0.064 (7)$ $0.057 (7)$ $0.074 (8)$ $0.072 (8)$ $0.083 (9)$ $0.052 (6)$ $0.051 (6)$ $0.044 (6)$ $0.039 (6)$ $0.066 (8)$ $0.044 (7)$ $0.053 (6)$ $0.042 (6)$ | $U^{11}$ $U^{22}$ $U^{33}$ $0.039 (5)$ $0.051 (6)$ $0.025 (4)$ $0.047 (6)$ $0.057 (7)$ $0.044 (6)$ $0.028 (5)$ $0.061 (7)$ $0.058 (6)$ $0.031 (5)$ $0.063 (7)$ $0.041 (5)$ $0.024 (4)$ $0.028 (5)$ $0.027 (4)$ $0.032 (5)$ $0.031 (5)$ $0.030 (4)$ $0.038 (6)$ $0.064 (7)$ $0.049 (6)$ $0.057 (7)$ $0.074 (8)$ $0.055 (7)$ $0.072 (8)$ $0.083 (9)$ $0.036 (6)$ $0.052 (6)$ $0.051 (6)$ $0.056 (6)$ $0.044 (6)$ $0.039 (6)$ $0.056 (6)$ $0.064 (7)$ $0.023 (5)$ $0.067 (7)$ $0.066 (8)$ $0.044 (7)$ $0.074 (8)$ $0.053 (6)$ $0.042 (6)$ $0.047 (6)$ | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $0.039 (5)$ $0.051 (6)$ $0.025 (4)$ $0.002 (5)$ $0.047 (6)$ $0.057 (7)$ $0.044 (6)$ $0.004 (5)$ $0.028 (5)$ $0.061 (7)$ $0.058 (6)$ $-0.010 (5)$ $0.031 (5)$ $0.063 (7)$ $0.041 (5)$ $-0.004 (5)$ $0.024 (4)$ $0.028 (5)$ $0.027 (4)$ $0.000 (4)$ $0.032 (5)$ $0.031 (5)$ $0.030 (4)$ $0.001 (4)$ $0.038 (6)$ $0.064 (7)$ $0.049 (6)$ $-0.004 (5)$ $0.057 (7)$ $0.074 (8)$ $0.055 (7)$ $-0.002 (6)$ $0.057 (7)$ $0.074 (8)$ $0.036 (6)$ $-0.003 (7)$ $0.052 (6)$ $0.051 (6)$ $0.036 (5)$ $-0.007 (5)$ $0.044 (6)$ $0.039 (6)$ $0.056 (6)$ $0.007 (5)$ $0.064 (7)$ $0.023 (5)$ $0.067 (7)$ $0.006 (5)$ $0.066 (8)$ $0.044 (7)$ $0.074 (8)$ $-0.007 (6)$ $0.053 (6)$ $0.042 (6)$ $0.047 (6)$ $-0.007 (5)$ | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $U^{13}$ $0.039 (5)$ $0.051 (6)$ $0.025 (4)$ $0.002 (5)$ $-0.004 (4)$ $0.047 (6)$ $0.057 (7)$ $0.044 (6)$ $0.004 (5)$ $-0.018 (5)$ $0.028 (5)$ $0.061 (7)$ $0.058 (6)$ $-0.010 (5)$ $-0.014 (5)$ $0.031 (5)$ $0.063 (7)$ $0.041 (5)$ $-0.004 (5)$ $0.000 (4)$ $0.024 (4)$ $0.028 (5)$ $0.027 (4)$ $0.000 (4)$ $-0.003 (3)$ $0.032 (5)$ $0.031 (5)$ $0.030 (4)$ $0.001 (4)$ $0.012 (4)$ $0.038 (6)$ $0.064 (7)$ $0.049 (6)$ $-0.004 (5)$ $0.011 (5)$ $0.057 (7)$ $0.074 (8)$ $0.055 (7)$ $-0.002 (6)$ $0.027 (5)$ $0.072 (8)$ $0.083 (9)$ $0.036 (6)$ $-0.003 (7)$ $0.003 (4)$ $0.044 (6)$ $0.039 (6)$ $0.056 (6)$ $0.007 (5)$ $0.010 (5)$ $0.064 (7)$ $0.023 (5)$ $0.067 (7)$ $0.006 (5)$ $-0.001 (6)$ $0.066 (8)$ $0.044 (7)$ $0.074 (8)$ $-0.007 (6)$ $-0.002 (6)$ |

| C15 | 0.021 (4)  | 0.038 (5)  | 0.033 (4)    | -0.002 (4)    | -0.006 (3)   | 0.001 (4)     |
|-----|------------|------------|--------------|---------------|--------------|---------------|
| C16 | 0.016 (4)  | 0.038 (5)  | 0.034 (4)    | -0.009 (4)    | -0.009 (3)   | 0.002 (4)     |
| C17 | 0.039 (5)  | 0.049 (6)  | 0.031 (5)    | -0.001 (5)    | 0.011 (4)    | 0.009 (4)     |
| C18 | 0.036 (5)  | 0.056 (7)  | 0.038 (5)    | 0.002 (5)     | 0.009 (4)    | -0.005 (5)    |
| C19 | 0.047 (6)  | 0.044 (6)  | 0.037 (5)    | 0.004 (5)     | 0.003 (4)    | -0.015 (4)    |
| C20 | 0.034 (5)  | 0.028 (5)  | 0.042 (5)    | 0.000 (4)     | 0.002 (4)    | -0.002 (4)    |
| C21 | 0.016 (4)  | 0.029 (5)  | 0.032 (4)    | -0.004 (3)    | 0.005 (3)    | -0.005 (4)    |
| Co1 | 0.0243 (6) | 0.0289 (6) | 0.0258 (6)   | 0.0001 (5)    | 0.0035 (4)   | -0.0003 (5)   |
| N1  | 0.026 (4)  | 0.034 (4)  | 0.031 (4)    | 0.001 (3)     | 0.005 (3)    | -0.001 (3)    |
| N2  | 0.034 (4)  | 0.031 (4)  | 0.033 (4)    | -0.003 (3)    | 0.006 (3)    | -0.011 (3)    |
| N3  | 0.034 (4)  | 0.027 (4)  | 0.037 (4)    | 0.001 (3)     | 0.004 (3)    | 0.004 (3)     |
| N4  | 0.026 (4)  | 0.028 (4)  | 0.027 (3)    | -0.001 (3)    | 0.003 (3)    | -0.002 (3)    |
| O1  | 0.030 (3)  | 0.037 (4)  | 0.038 (3)    | -0.002 (3)    | -0.003 (3)   | 0.007 (3)     |
| 02  | 0.023 (3)  | 0.036 (4)  | 0.035 (3)    | -0.004 (3)    | -0.005 (2)   | 0.004 (3)     |
| O3  | 0.065 (5)  | 0.059 (5)  | 0.033 (3)    | 0.007 (4)     | 0.004 (3)    | 0.003 (3)     |
| O4  | 0.032 (3)  | 0.048 (4)  | 0.029 (3)    | 0.001 (3)     | 0.014 (2)    | -0.008 (3)    |
| 05  | 0.037 (3)  | 0.041 (4)  | 0.032 (3)    | 0.009 (3)     | 0.000 (3)    | 0.000 (3)     |
| O6  | 0.039 (4)  | 0.068 (5)  | 0.055 (4)    | 0.010 (4)     | 0.002 (3)    | -0.014 (4)    |
| 07  | 0.028 (3)  | 0.053 (4)  | 0.034 (3)    | 0.002 (3)     | 0.002 (3)    | -0.008 (3)    |
| 08  | 0.021 (4)  | 0.024 (4)  | 0.021 (4)    | 0.004 (3)     | 0.006 (3)    | -0.003 (3)    |
| O9  | 0.035 (3)  | 0.033 (4)  | 0.035 (3)    | -0.004 (3)    | 0.008 (3)    | 0.000 (3)     |
| O10 | 0.047 (4)  | 0.027 (3)  | 0.039 (3)    | 0.007 (3)     | 0.006 (3)    | -0.006 (3)    |
| O11 | 0.054 (4)  | 0.042 (4)  | 0.061 (4)    | -0.016 (3)    | 0.009 (3)    | -0.013 (3)    |
| O12 | 0.033 (3)  | 0.046 (4)  | 0.022 (3)    | 0.002 (3)     | 0.003 (2)    | -0.008 (3)    |
| W1  | 0.0353 (2) | 0.0295 (2) | 0.0313 (2)   | -0.00686 (16) | 0.00560 (15) | -0.00922 (15) |
| W2  | 0.0381 (2) | 0.0338 (2) | 0.02229 (18) | 0.00114 (16)  | 0.00478 (14) | -0.00123 (14) |
| W3  | 0.0274 (2) | 0.0368 (2) | 0.0325 (2)   | 0.00719 (16)  | 0.00465 (14) | -0.00600 (15) |

### Geometric parameters (Å, °)

| C1—N1  | 1.333 (10) | C19—C20              | 1.373 (11) |
|--------|------------|----------------------|------------|
| C1—C2  | 1.366 (13) | С19—Н19              | 0.9300     |
| C1—H1  | 0.9300     | C20—N4               | 1.340 (10) |
| С2—С3  | 1.355 (13) | C20—H20              | 0.9300     |
| C2—H2  | 0.9300     | C21—O2 <sup>i</sup>  | 1.254 (9)  |
| C3—C4  | 1.388 (13) | C21—O1               | 1.271 (9)  |
| С3—Н3  | 0.9300     | C21—C21 <sup>i</sup> | 1.528 (15) |
| C4—C5  | 1.379 (11) | Co1—O1               | 2.104 (6)  |
| C4—H4  | 0.9300     | Co1—N1               | 2.101 (7)  |
| C5—N1  | 1.360 (9)  | Co1—N4               | 2.105 (6)  |
| C5—C6  | 1.479 (11) | Co1—N2               | 2.114 (6)  |
| C6—N2  | 1.351 (10) | Co1—N3               | 2.119 (7)  |
| C6—C7  | 1.370 (11) | Co1—O2               | 2.134 (6)  |
| С7—С8  | 1.366 (13) | O2—C21 <sup>i</sup>  | 1.254 (9)  |
| С7—Н7  | 0.9300     | O3—W2                | 1.690 (6)  |
| C8—C9  | 1.378 (15) | O4—W2                | 1.919 (6)  |
| С8—Н8  | 0.9300     | O4—W3                | 1.926 (6)  |
| C9—C10 | 1.343 (12) | O5—W3                | 1.904 (5)  |
|        |            |                      |            |

| С9—Н9     | 0.9300     | O5—W2 <sup>ii</sup>                   | 1.935 (5)   |
|-----------|------------|---------------------------------------|-------------|
| C10—N2    | 1.346 (10) | O6—W3                                 | 1.698 (6)   |
| C10—H10   | 0.9300     | O7—W3                                 | 1.915 (6)   |
| C11—N3    | 1.325 (11) | O7—W1                                 | 1.931 (6)   |
| C11—C12   | 1.377 (13) | O8—W3 <sup>ii</sup>                   | 2.3185 (4)  |
| C11—H11   | 0.9300     | O8—W3                                 | 2.3185 (4)  |
| C12—C13   | 1.386 (14) | O8—W1                                 | 2.3240 (4)  |
| С12—Н12   | 0.9300     | O8—W1 <sup>ii</sup>                   | 2.3240 (4)  |
| C13—C14   | 1.339 (14) | O8—W2 <sup>ii</sup>                   | 2.3252 (5)  |
| C13—H13   | 0.9300     | O8—W2                                 | 2.3252 (5)  |
| C14—C15   | 1.368 (12) | O9—W2                                 | 1.912 (6)   |
| C14—H14   | 0.9300     | O9—W1                                 | 1.915 (5)   |
| C15—N3    | 1.327 (10) | O10—W1                                | 1.914 (6)   |
| C15—C16   | 1.491 (11) | O10—W3 <sup>ii</sup>                  | 1.914 (6)   |
| C16—N4    | 1.336 (10) | O11—W1                                | 1.696 (6)   |
| C16—C17   | 1.391 (11) | O12—W1                                | 1.922 (5)   |
| C17—C18   | 1.367 (12) | O12—W2 <sup>ii</sup>                  | 1.920 (6)   |
| С17—Н17   | 0.9300     | W2—O12 <sup>ii</sup>                  | 1.920 (6)   |
| C18—C19   | 1.372 (12) | W2—O5 <sup>ii</sup>                   | 1.935 (5)   |
| C18—H18   | 0.9300     | W3—O10 <sup>ii</sup>                  | 1.914 (6)   |
| N1—C1—C2  | 124.0 (8)  | C1—N1—Co1                             | 127.4 (5)   |
| N1—C1—H1  | 118.0      | C5—N1—Co1                             | 114.6 (5)   |
| C2—C1—H1  | 118.0      | C10—N2—C6                             | 118.9 (7)   |
| C3—C2—C1  | 117.5 (9)  | C10—N2—Co1                            | 126.0 (6)   |
| С3—С2—Н2  | 121.3      | C6—N2—Co1                             | 115.1 (5)   |
| C1—C2—H2  | 121.3      | C11—N3—C15                            | 118.4 (8)   |
| C2—C3—C4  | 121.2 (9)  | C11—N3—Co1                            | 125.9 (6)   |
| С2—С3—Н3  | 119.4      | C15—N3—Co1                            | 115.7 (6)   |
| С4—С3—Н3  | 119.4      | C20—N4—C16                            | 119.2 (7)   |
| C3—C4—C5  | 117.8 (8)  | C20—N4—Co1                            | 125.2 (6)   |
| С3—С4—Н4  | 121.1      | C16—N4—Co1                            | 115.4 (5)   |
| С5—С4—Н4  | 121.1      | C21—O1—Co1                            | 114.2 (5)   |
| N1C5C4    | 121.5 (7)  | C21 <sup>i</sup> —O2—Co1              | 113.0 (5)   |
| N1—C5—C6  | 116.4 (7)  | W2                                    | 117.6 (2)   |
| C4—C5—C6  | 122.1 (7)  | W3—O5—W2 <sup>ii</sup>                | 117.3 (3)   |
| N2—C6—C7  | 120.6 (8)  | W3—O7—W1                              | 117.5 (3)   |
| N2        | 115.4 (6)  | W3 <sup>ii</sup> —O8—W3               | 180.0       |
| C7—C6—C5  | 124.0 (8)  | W3 <sup>ii</sup> —O8—W1               | 89.833 (16) |
| C8—C7—C6  | 120.4 (9)  | W3—O8—W1                              | 90.167 (16) |
| С8—С7—Н7  | 119.8      | W3 <sup>ii</sup> —O8—W1 <sup>ii</sup> | 90.167 (16) |
| С6—С7—Н7  | 119.8      | W3—O8—W1 <sup>ii</sup>                | 89.833 (16) |
| С7—С8—С9  | 117.8 (9)  | W1                                    | 180.0       |
| С7—С8—Н8  | 121.1      | W3 <sup>ii</sup> —O8—W2 <sup>ii</sup> | 90.173 (13) |
| С9—С8—Н8  | 121.1      | W3—O8—W2 <sup>ii</sup>                | 89.827 (13) |
| С10—С9—С8 | 120.7 (10) | W1-08-W2 <sup>ii</sup>                | 90.203 (14) |

| С10—С9—Н9                      | 119.7      | W1 <sup>ii</sup> —O8—W2 <sup>ii</sup>  | 89.797 (14) |
|--------------------------------|------------|----------------------------------------|-------------|
| С8—С9—Н9                       | 119.7      | W3 <sup>ii</sup> —O8—W2                | 89.827 (13) |
| N2—C10—C9                      | 121.6 (10) | W3—O8—W2                               | 90.173 (13) |
| N2                             | 119.2      | W1                                     | 89.797 (14) |
| C9—C10—H10                     | 119.2      | W1 <sup>ii</sup> —O8—W2                | 90.203 (14) |
| N3—C11—C12                     | 123.5 (9)  | W2 <sup>ii</sup> —O8—W2                | 180.0       |
| N3—C11—H11                     | 118.2      | W2                                     | 118.1 (3)   |
| C12—C11—H11                    | 118.2      | W1-010-W3 <sup>ii</sup>                | 117.8 (3)   |
| C13—C12—C11                    | 116.4 (9)  | W1-012-W2 <sup>ii</sup>                | 118.0 (3)   |
| C13—C12—H12                    | 121.8      | O11—W1—O10                             | 103.9 (3)   |
| C11—C12—H12                    | 121.8      | O11—W1—O9                              | 104.0 (3)   |
| C14—C13—C12                    | 120.2 (10) | O10—W1—O9                              | 86.9 (2)    |
| C14—C13—H13                    | 119.9      | O11—W1—O12                             | 104.1 (3)   |
| C12—C13—H13                    | 119.9      | O10-W1-O12                             | 86.8 (2)    |
| C13—C14—C15                    | 119.8 (9)  | O9—W1—O12                              | 151.9 (2)   |
| C13—C14—H14                    | 120.1      | O11—W1—O7                              | 104.1 (3)   |
| C15-C14-H14                    | 120.1      | O10—W1—O7                              | 152.1 (2)   |
| N3—C15—C14                     | 121.6 (8)  | O9—W1—O7                               | 86.5 (2)    |
| N3—C15—C16                     | 115.2 (7)  | O12—W1—O7                              | 86.3 (2)    |
| C14—C15—C16                    | 123.2 (8)  | O11—W1—O8                              | 180.0 (3)   |
| N4—C16—C17                     | 121.1 (8)  | O10-W1-O8                              | 76.11 (17)  |
| N4-C16-C15                     | 115.8 (7)  | O9—W1—O8                               | 76.06 (17)  |
| C17—C16—C15                    | 123.0 (8)  | O12—W1—O8                              | 75.87 (17)  |
| C18—C17—C16                    | 119.2 (8)  | O7—W1—O8                               | 75.96 (18)  |
| С18—С17—Н17                    | 120.4      | O3—W2—O9                               | 105.6 (3)   |
| С16—С17—Н17                    | 120.4      | O3—W2—O4                               | 103.1 (3)   |
| C17—C18—C19                    | 119.5 (8)  | O9—W2—O4                               | 87.0 (2)    |
| C17—C18—H18                    | 120.2      | O3—W2—O12 <sup>ii</sup>                | 102.5 (3)   |
| C19—C18—H18                    | 120.2      | O9—W2—O12 <sup>ii</sup>                | 152.0 (2)   |
| C18—C19—C20                    | 118.9 (8)  | O4—W2—O12 <sup>ii</sup>                | 86.6 (2)    |
| C18—C19—H19                    | 120.6      | O3—W2—O5 <sup>ii</sup>                 | 104.7 (3)   |
| С20—С19—Н19                    | 120.6      | 09—W2—O5 <sup>ii</sup>                 | 86.7 (2)    |
| N4—C20—C19                     | 122.1 (8)  | 04—W2—O5 <sup>ii</sup>                 | 152.2 (2)   |
| N4—C20—H20                     | 118.9      | 012 <sup>ii</sup> —W2—O5 <sup>ii</sup> | 86.3 (2)    |
| С19—С20—Н20                    | 118.9      | O3—W2—O8                               | 178.2 (2)   |
| O2 <sup>i</sup> —C21—O1        | 125.8 (7)  | O9—W2—O8                               | 76.08 (16)  |
| $O2^{i}$ —C21—C21 <sup>i</sup> | 117.7 (9)  | O4—W2—O8                               | 76.11 (15)  |
| O1—C21—C21 <sup>i</sup>        | 116.4 (9)  | 012 <sup>ii</sup> —W2—08               | 75.88 (15)  |
| O1—Co1—N1                      | 164.8 (2)  | O5 <sup>ii</sup> —W2—O8                | 76.08 (16)  |
| O1—Co1—N4                      | 93.3 (2)   | O6—W3—O5                               | 104.3 (3)   |
| N1—Co1—N4                      | 96.6 (2)   | O6—W3—O7                               | 103.2 (3)   |
| O1—Co1—N2                      | 92.9 (2)   | O5—W3—O7                               | 87.2 (2)    |
| N1—Co1—N2                      | 78.4 (3)   | O6—W3—O10 <sup>ii</sup>                | 104.2 (3)   |
| N4—Co1—N2                      | 172.1 (3)  | O5—W3—O10 <sup>ii</sup>                | 87.1 (2)    |
| 01—Co1—N3                      | 90.4 (2)   | O7—W3—O10 <sup>ii</sup>                | 152.6 (2)   |

| N1—Co1—N3 | 103.0 (3) | O6—W3—O4                 | 102.7 (3)  |
|-----------|-----------|--------------------------|------------|
| N4—Co1—N3 | 77.4 (3)  | O5—W3—O4                 | 153.0 (2)  |
| N2—Co1—N3 | 97.7 (3)  | O7—W3—O4                 | 86.6 (2)   |
| O1—Co1—O2 | 78.3 (2)  | O10 <sup>ii</sup> —W3—O4 | 86.3 (2)   |
| N1—Co1—O2 | 89.4 (2)  | O6—W3—O8                 | 178.8 (2)  |
| N4—Co1—O2 | 94.3 (2)  | O5—W3—O8                 | 76.81 (16) |
| N2—Co1—O2 | 91.7 (2)  | O7—W3—O8                 | 76.38 (16) |
| N3—Co1—O2 | 165.6 (2) | O10 <sup>ii</sup> —W3—O8 | 76.26 (16) |
| C1—N1—C5  | 118.0 (7) | O4—W3—O8                 | 76.16 (15) |
|           |           |                          |            |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+2, -*z*+1.



Fig. 1